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An extended algebraic reconstruction technique (ART) for density-gradient
projections: laser speckle photographic tomography

H. S. Ko, K. D. Kihm

Abstract An extended algebraic reconstruction technique
(ART) is presented for tomographic image reconstruction
from the density-gradient projections, such as laser speckle
photography. The essence of the extended ART is that the
density-gradient projection data of speckle photography
(Eq. (1)) are first numerically integrated to the algebraic
representation of interferometric fringe number data (Eq.
(12)), which ART can readily reconstruct into the cross-
sectional field. The extended ART is numerically examined by
using two computer synthesized phantom fields, and experi-
mentally by using asymmetric single and double helium jets in
air. The experimentally reconstructed images were also com-
pared with the direct measurements of helium concentration
using an oxygen analyzing probe. The extended ART method
shows an improved accuracy and is proposed to use to
tomographically reconstruct the density-gradient projections
over the previous Fourier convolution (FC) method (Liu et al.
1989).

List of symbols
A amplitude of basis function
b basis function (Eq. (4))
c defocusing distance (Fig. 2)
C multiplicative correction vector (Eq. (8))
d distance between specklegram and Young’s fringe

images
f actual field
fK guessed or intermediate objective field to be recon-

structed
H helium mass fraction in air
K Gladstone—Dale constant (0.226]10~3 m3/kg at

j\632.8 nm for air at STP (Eq. (1))
m magnification of parabolic mirror (Fig. 2)
m@ magnification of camera imaging
M number of rays, or the number of meshes in the

x-direction
n index of refraction
N number of basis functions, or the number of meshes

in the y-direction
P number of projections

R oxygen mass fraction in air
Ro Reference oxygen mass fraction (20.6% at STP)
s coordinate on the projection plane, perpendicular to

the ray direction (Fig. 1)
s
F

fringe spacing
t coordinate parallel to the ray direction (Fig. 1)
(x, y) objective field coordinate (Fig. 1)
a line-of-sight beam deflection angle (Eq. (1), Fig. 1 or

Fig. 2)
d amount of speckle dislocation (Fig. 2 or Eq. (9))
e line-of-sight beam deflection angle measured at the

ground glass plane (Fig. 2)
j laser wave length [j\632.8 nm for helium—neon

laser]
h angle of projection (Fig. 1)
o density
p spread of basis function (Eq. (4))
U reconstruction error
t4 virtual projection of guessed objective field fK
t
SP

beam deflection angle of speckle photographic
projection of actual field f (Eq. (1))

t
IF

fringe number of interferometric projection of
actual field f (Eq. (10))

1
Introduction
Speckle photography (Franion 1979) is a nonintrusive optical
technique to detect light ray refraction through an optically
thin phase object of varying density field. Elaborate inversion
of the measured ray refraction, thereby, will determine media
density and temperature fields (Merzkirch 1987). The tech-
nique provides highly accurate measurements with spatial
data resolutions smaller than 1.0 mm and its wide range of
applications to various thermal and fluid engineering problems
have been recently presented in a review article written by one
of the authors (Kihm 1997).

Speckle photography, like most other optical measurement
techniques, is a line-of-sight technique and the ray integral of
the information on the refractive index gradient, normal to the
ray direction, is projected as beam deflection angle into a point
on the projection plane. Using the Gladstone—Dale relation,
n\1]Ko (Partington 1953), the projected beam deflection
angle a is given as a ray integral of the field density gradient
(Fig. 1):

t
SP

(s, h):a\K :
Lo(x, y)

Ls
dt (1)
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Fig. 2. Geometric formulation of speckle dislocation

Fig. 1. Cross-sectional density field o(x, y) and its line-of-sight
projection tij\t(si , hj) for speckle photography

where s is perpendicular to, and t is parallel to the incident ray.
The line-of-sight ambiguity in a, which occurs from the ray
integral along t, must be eliminated so that the true density
field, o(x, y), can be reconstructed. To achieve this, Eq. (1)
must be somehow inverted and this mathematical inversion
procedure is called tomography.

A mathematical inversion procedure for speckle photogra-
phy has been developed using the two-dimensional Fourier
transformation (Liu et al. 1989). This is called a Fourier
convolution (FC) method, which is simple, but suffers
from reduced reconstruction accuracy when the amount of
projection data is limited or restricted. Due to spatial and
other restrictions, the reconstruction of practical problems is
viable in limited and restricted projections to a degree. An
iterative reconstruction method generally works better for such
cases of limited projections, because of its repeated updating
of solutions. To the author’s knowledge, however, no itera-
tive reconstruction method for density-gradient projec-
tions, including speckle photography, has been published to
date.

Since Eq. (1) correlating the projection and the density field
is non-algebraic, the conventional algebraic reconstruction
technique (ART) cannot invert Eq. (1). The present work
extends ART where non-algebraic speckle photography data
are numerically integrated in the projection plane to converted
into algebraic interferometric data so that the latter can be
converted by ART. The extended ART has been examined
numerically by using computer-synthesized phantoms and
experimentally using asymmetric helium jets.

2
Tomographic algorithms: Fourier convolutions (FC) and
algebraic reconstruction technique (ART)
Fourier Convolution (FC) method is based on the Fourier slice
theorem (Kak and Slaney 1987). By taking Fourier transforms
on both sides of Eq. (1) and after some mathematical
rearrangement, the inverse Fourier transformation is derived

to give the density distribution as (Liu et al. 1989):

fK (x, y)\o(kDx, nDy)

\(PnK)~1
N~1
+
j/0

(M~1)/2
+

m{/~(M~1)/2
a(m@ Ds, jDh) q(m[m@)

(2)

where fK is an object function to be reconstructed (e.g.
density field), a represents the line-of-sight projected deflec-
tion angle of the refracted ray, as shown in Figs. 1 and 2,
P denotes the number of projections, K is the Gladstone—Dale
constant, k, n, j, m, and m@ are integers, and Dx and Dy are the
grid sizes in x and y directions of the M]N discretized
reconstruction plane.

The discretized filter function q(m) is given as

q(m)\G
1/m,
0

when m is odd
otherwise

(3)

where m\̂ 1, ^2,2, ^(M[1)/2. The Fourier convolution
(FC) method is simple, very fast and accurate, but requires
many equally angled projections for acceptable accuracy.

When using an iterative method, it is an open question
concerning the best representation for the field to be recon-
structed. Considering a two-dimensional cross-sectional field,
one can represent the field as a series of basis functions
allowing the parameters to be determined optimally:

fK (x, y)\
N
+
i/1

Aib(x, y; pi , xi , yi) (4)

where b represents a general form of basis function located at
(xi , yi) with height Ai and spread pi , and N denotes the total
number of basis functions. The use of a smooth basis function
can accurately represent a relatively smooth object field with
far fewer coefficients (unknowns) than a square-pixel basis
function. For the field representation of Eq. (4), the number of
total unknowns can be as many as 4N; 2N unknown heights
and spreads for the N basis functions, and 2N coordinates for
their locations, which can also be optimally searched (Ko et al.
1997).

The algebraic reconstruction technique (Gorden 1974)
undertakes the optimization task for the linear case where each
basis function is defined by a single parameter (usually its
unknown height with a fixed spread) and the location of each
basis function is given, i.e.,

fK (x, y)\
N
+
i/1

Aib(x[xi , y[yi) (5)
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where Ai is the height coefficient of the i-th basis function
centered at a specified location of (xi, yi). A comparative study
of the choice of basis functions (Hanson and Wecksung 1985)
suggests the use of the cubic B-spline, which is described in the
x variation by (Hou and Andrews 1978):

bx(x[xi)

\G
(2Dx[Dx[xi D)3[4(Dx[Dx[xi D)3

4D3x
, Dx[xi D\Dx

(2Dx[Dx[xi D)3
4D3x

, DxODx[xi DO2Dx

0, Dx[xi D[2Dx
(6)

where bx is equal to 1 at x\xi , 0.25 at x\xi^Dx , 0 at
x\xi^2Dx and thereafter. The y variation by is similar, and the
two-dimensional basis function is the product of the two,
i.e., b(x[xi , y[yi)\bx(x[xi)]by(y[yi). All reported ART
results in this paper use the cubic B-spline basis function.

The basic ART uses feedback information on the deviation
of the virtual projection from the measured projection and
iteratively optimizes the object coefficient vector Ai by a simple
algebraic updating:

Aq`1
i \Aq

i
]Wq

i
+

p
(tp[tK p )

NP
(7)

where Wi is the weighting factor and q denotes the qth iteration.
An optimized set of unknown Ai’s must be found to minimize
the deviations between the virtual projection tK of an inter-
mediate object function fK and the measured projection t of the
actual field f.

Multiplicative algebraic reconstruction technique (MART)
differs from the ART only in the way the deviation between the
virtual projection tK and the measured projection t is distrib-
uted among the object coefficients. The MART uses an element
Ci of the multiplicative correction vector C as follows:

Aq`1
i \Cq

i
Aq

i

Cq
i
\G

1[0.5Wq
i A1[

ti
tK iB, tK iO0

1 otherwise
(8)

where q denotes the qth iteration and Wi is the weighting
factor. One advantage of using MART is to ensure a non-
negative object field in reconstructing non-negative scalars.

Note that the ART and the MART updates, in principle,
are possible only for algebraic projections in which the ray
integration of the field directly gives the projection data, such
as in interferometry (Eq. (10) in the next section).

3
Line-of-sight projections: laser speckle photography and
interferometry
The refractive index variation of a phase object deflects
the incident laser beam. The beam deflection angles or its
interfered pattern with undeflected beams are projected in
a line-of-sight manner on the recording plane. Laser speckle
photography records the projected beam deflection angles
on a double-exposed photographic film. Wave-front inter-

ferometry, such as Mach—Zehnder interferometry (Vest 1979),
records the interfered fringe patterns.

The beam deflection angle of speckle photography (Fig. 2) is
given as a ray integral of the field density gradient normal to
the incident ray, as expressed in Eq. (1). When coherent light is
incident upon the random diffraction grating, usually made of
ground glass, the light rays randomly diffract in all directions
in a constructive or destructive way. When viewed from
a distance, the constructive or destructive interference will be
seen as very fine patterns of bright and dark spots, or laser
speckles. The change in the index of refraction of the test field
will bend the ray slightly from its original path. This causes the
incident ray to strike the ground glass at a slightly different
angle and the speckle dislocates by an amount d, from its
original location.

A specklegram is taken by photographically overlapping the
original speckles without a test field, and then the dislocated
speckles in the presence of a test field. Thus, the dislocation
d represents the beam deflection through e, i.e.,

d\c tan e\c tan(a/m):ca/m (9)

where the defocusing distance c is the distance between the
ground glass and the actual image plane for specklegram
recording, and m is the magnification of the parabolic mirror.
The amount of speckle dislocation calculates the beam
deflection angle and the local value of the refractive index
gradient. The measured distribution of the refractive index
gradient determines the medium temperature and its gradient
for diverse thermal flow problems (Wernekinck et al. 1985;
Kastell et al. 1992; Kihm et al. 1993).

Wave front interferometry, such as Mach—Zehander inter-
ferometry, creates the path length difference between the
reference beam and the test beam that goes through a phase
object. The resulting fringes are then shifted with respect to the
undisturbed fringes (fringes formed by the two beams without
a tested phase object) and the fringe shift number is expressed
as

t
IF

\
1
j

: (n[n
3%&

) dt\
K
j

=
:

~=

(o[o
3%&

) dt (10)

where j denotes the laser wave length. Note that the fringe shift
number is determined directly by the ray integration of the
density field, whereas the beam deflection angle of laser speckle
photography is given by the ray integration of the density
gradient, shown in Eq. (1).

Combining Eqs. (1) and (10) gives

Lt
IF

Ls
\

K
j

L
Ls

: (o[o
3%&

) dt\
K
j

:
Lo
Ls

dt\
1
j

t
SP

(11)

Integrating Eq. (11) along s on the projection plane gives

t
IF

\
1
j

: t
SP

ds (12)

Equation (12) states that an integral of the ray deflection angle
from speckle photography, t

SP
, along s is equivalent to the

interferometric fringe shift number t
IF

. Once the integration
is carried out, the ART operator, Eqs. (7) and (8), can proceed
in updating by using the straightforward feedback information
on the density itself.
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f (x, y)\G
o(x, y)\

x1[cosM2n(x]0.5)4/5Nyx1[cosM2n(y]0.5)2/3Ny
4

, Dx, y D\0.5

0 otherwise
(13)

The idea of the density-gradient integration has been
explored previously for different optical technique in using the
Hartmann sensor to measure the flow field of a phase object
(McMackin et al. 1995). The Hartmann sensor uses a lenslet
array to split a single laser beam into a number of subapertures
and detects their individual focal spot intensity patterns
change occurring by the optical path differentials of the phase
object. However, their application is limited to an axisymmet-
ric tomographic reconstruction using the Abel transformation
principle, which is a subset of the Fourier convolution for
axisymmetric flows.

4
Phantom reference fields and reconstruction errors
The extended ART is tested using two different computer
synthesized phantom density fields that have been suggested as
reference fields in previous literature (Verhoeven 1993). The
first one is called a Cosine phantom expressed by:

which constructs an asymmetric single peak shown in Fig. 3a.
The second phantom is called a CosGauss function by

f (x, y)\0.327 Cosine(x, y)

]0.872 expM[[9 (x[0.2)]2[[6 (y[0.1)]2N (14)

]0.872 expM[[8 (x]0.2)]2[[30 (y]0.35)]2N

which gives an asymmetric double-peak phantom shown in
Fig. 3b.

Four different error measures are used in this paper. The
first is the average error of the reconstructed object function
fK and the reference phantom function f :

U
!7'

\
+N

i/1
D f (xi , yi)[fK (xi , yi) D

N
(15)

where N is the total number of the basis functions used to
conform to the reconstructing object functions. The second
is a normalized RMS error:

U
3.4

\S
+N

i/1
[ f (xi , yi)[fK (xi , yi)]2

+N
i/1

[ f (xi , yi)[fM ]2
(16)

where fM is the average value of the phantom field f. The third
one is a normalized absolute error:

U
!"#

\
+N

i/1
D f (xi , yi)[fK (xi , yi)D

+N
i/1

D f (xi , yi)D
(17)

Note that these three errors measure the reconstruction quality
based on the comparison between the reconstructed field
(object function) and the true field (phantom function). In real
experiments, however, the true field is unknown and the
quality of reconstruction is only measured by comparing the
virtual projections tK against the measured projections t. Thus,

the fourth and the practically available measure of projection
error is defined as

U
130

\
+M

i/1
+P

j/1
D t (si , hj)[tK (si , hj) D

+M
i/1

+P
j/1

Dt(si , hj) D
(18)

where M is the number of rays per projection and P denotes the
number of projections.

5
Reconstruction of test phantoms
The three reconstruction algorithms, ART, MART, and FC,
were used for reconstruction of the two phantom fields under
the speckle projections. For the Cosine phantom each projec-
tion consists of 45 rays (M\45); the object field is described by
15]15 discrete pixels for the FC reconstruction (N\225), and
by 15]15 cubic B-spline basis functions for the ART and
MART (N\225). For the case of CosGauss phantom each
projection consists of 63 rays (M\63) and the number of

pixels or basis functions is N\25]25\625 for FC, ART and
MART. When the ART iteration exceeds the optimum iteration
steps, artifacts may violate the convergence resulting in gradually
increasing errors (Decker 1993). Thus, the ART calculations
are ceased when the minimum is reached for the discrepancy
between the reconstructed field and the phantom field.

The reconstruction calculations were performed with five
equally angled projections (P\5). Figure 4 shows example
projection data that are projected in the direction normal to
the broadside of the Cosine phantom field. The dashed curve
shows laser speckle photographic projection t

SP
(Eq. (1)), and

the solid curve represents its integral along the s-coordinate on
the projection plane (Eq. (12)), i.e., interferometric projection
t
IF

. After the discrete speckle data are curve-fitted by a high-
order polynomial function, the numerical integration is carried
out with very fine mesh resolution. A trapezoidal rule was used
for the numerical integration and no significant numerical
integration error is shown to contribute to the overall recon-
struction error.

The FC reconstructs the Cosine phantom within an accept-
able accuracy (Fig. 3c), primarily because of the simplicity of
the slightly off-centered single peak. However, the reconstruc-
tion of the double-peak phantom of the CosGauss function
(Fig. 3d) shows noisy and erroneous data. In addition to the
noise arising near the field boundary, four or more mis-
representing peaks are present.

The extended ART reconstructs the Cosine phantom in
a better accuracy (Fig. 3e). The ART reconstruction of the
CosGauss phantom (Fig. 3f ) shows significant improvement
over the FC reconstruction of Fig. 3d. The two peaks are clearly
pronounced and the peak locations are accurately predicted.
The peak heights, however, are 15—20% underpredicted
compared with the phantom heights. It is believed that this
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Fig. 3a—f. Reference phantom
fields and their reconstructions
for speckle photography under
five projections. a Cosine
phantom; b CosGauss phantom;
FC reconstructions c, d; ART
reconstructions e, f

discrepancy can be attributed primarily to the numerical
diffusion due to the discrete representation of the phantom
field using the basis function. Nevertheless, the extended ART
method shows a noticeably improved reconstruction perfor-
mance in comparison with the FC method.

Table 1 presents a comparison of the four errors
(Eqs. (15)—(18)) for the reconstruction results shown in Fig. 3.
The average, RMS, and absolute errors are various measures
of the reconstruction accuracy for the reference phantom
field. These errors have more significance when comparing
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Fig. 4. Integration of speckle photographic projection and conversion
to interferometric projection of Cosine function

Table 1. Comparison of reconstruction errors between the extended
algebraic reconstruction technique (ART), multiplicative ART
(MART), and Fourier convolution (FC) method

Number of Phantom Reconstruction U
!7'

U
3.4

U
!"4

U
130

projections field technique

3 Cosine ART 2.98 14.70 12.73 12.06
MART 2.28 12.64 9.72 10.38
FC 8.98 40.58 38.33 —

CosGauss ART 4.65 38.58 33.59 17.65
MART 4.03 38.43 29.08 14.32
FC 10.84 93.41 78.30 —

5 Cosine ART 0.93 5.07 3.99 5.79
MART 1.07 6.01 4.58 3.34
FC 2.85 12.97 12.15 —

CosGauss ART 2.50 22.75 18.06 5.94
MART 2.45 25.76 17.69 6.61
FC 5.16 43.34 37.26 —

Fig. 5a, b. Schematic of a half-blocked nozzle and b two-hole nozzle

tomographic algorithms using a known reference field. For all
the tested cases, the reconstruction errors of ART are signifi-
cantly lower than those of the FC method.

In reality, since the reference field is unknown and yet to be
determined, the projection error (Eq. (18)) is the only available
measure of the reconstruction accuracy. The projection errors
of the FC results would not truly reflect the deviations of the
reconstructed field from the reference phantom field since the
projection errors will be dominated by the numerical errors
occurring from the differentiation of the discretely reconstruc-
ted field, which is necessary for tK in Eq. (18).

While the errors of the MART results are slightly, but
consistently, smaller than those of the ART for three projection
cases, the errors of the ART and the MART are comparable for
five projection cases, showing poor performances of the MART
than the ART for some cases. Verhoeven (1993) recommends
MART, instead of ART, particularly for non-negative scalar
fields like a density field. However, since the errors between the
ART and the MART are not much different and some cases are

reversed, the presented results herein will focus only on the
ART.

6
Experimental setup
Two asymmetric helium jets, one from a half-blocked orifice
(Fig. 5a) and the other from a two-hole orifice (Fig. 5b), were
tested for the extended ART reconstruction from the speckle
photographic projections. Both orifices were installed at the
end of 12.7 mm ID copper tube. For detailed positioning, the
entire jet unit sits on a rotational, and vertically adjustable
stand. Line-of-sight speckle photographic images were taken at
four equally-angled projections with 45 data realizations per
projection for the half-blocked jet, and at six equally-angled
projections with 85 projection data points for the two-hole jet.
A Pitot tube measured flow velocity profiles at the tube exit,
which converted to the spatially averaged velocity and
Reynolds number.

The present speckle photography system uses a 35 mW
He-Ne laser (j\632.8 nm) as the light source. A 4]5 format
camera ( f\5.6 at 1/250 s) records superimposed speckle
images, with and without a test field. The photographic
negative of speckle images is mounted to a precise x—y stage
and is interrogated by a 10 mW He—Ne laser with a beam
diameter of 0.8 mm. At each illuminated point on the speckle-
gram. Young’s fringes are generated and the fringe images are
recorded by a CCD camera and digitized into a PC to measure
the fringe spacing, s

F
(Robinson 1983). The beam deflection

angle is given as (Kastell et al. 1992):

a\
m
m@

jd
cs

F

(19)
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Fig. 7a—d. Reconstructed fields using
extended ART and FC: half-blocked
orifice (Re\990) a ART; b FC; two-hole
orifice (Re\1270); c ART d FC

Fig. 6. Projection errors versus iteration for ART reconstruction of
experimental data

where c is the defocusing distance (Fig. 2), d is the distance
between the specklegram and the imaging screen for Young’s
fringes, and m and m@ denote the magnification of the parabolic
mirror and the camera, respectively. The beam deflection

angle, Eq. (19), constitutes the line-of-sight speckle photo-
graphic projections of Eq. (1).

The oxygen analyzer directly measures the density of
air/helium mixture by detecting the oxygen percentage of
sampled gas (Fumizawa and Okamoto 1993). The principle of
the analyzer is based on a Zirconia sensor that measures the
quantity of oxygen ions at an elevated temperature. The oxygen
percentage can be easily converted to the gas density o as
follows:

o\H * o
)%

](1[H) * o
!*3

with H\1[R/R0 (20)

where H is the helium mass fraction, R is the measured oxygen
percentage, R

0
is the reference oxygen percentage (20.6% at the

laboratory), o
)%

is the pure helium density, and o
!*3

is the pure
air density given at the laboratory. The measured gas density is
readily converted to normalized helium concentration as

o*\
o[o

!*3
o
)%

[o
!*3

(21)

where o* ranges from 0 for pure air to 1.0 for pure helium. This
normalized helium concentration is used as the reference
profiles for the comparison of the optically measured density
profiles.
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Fig. 8a, b. Comparison of normalized helium density distribution
along the centerline of a half-blocked orifice (Re\990), and b two-
hole orifice (Re\1270) for extended ART reconstructions, FC
reconstructions, and oxygen analyzer data

7
Experimental results
15]15 cubic B-spline basis functions were used to constitute
the cross-sectional object field of the half-blocked jet and
25]25 cubic B-spline functions were used to constitute the
two-hole jet. The regression technique fitted the discrete
projection data (45 or 85 data points per projection) to the
ninth-order polynomials and the polynomials were analytically
integrated to the interferometric data for the successive ART
reconstruction. An initial guess of zero helium concentration
in the whole domain was used for both calculations.

Figure 6 shows the projection errors (Eq. (18)) versus the
ART iteration steps for the two tested cases. Since the true
density field is unknown, the reconstruction errors based on
the real field (U

!7'
, U

3.4
, U

!"4
) cannot be evaluated and the

only available error for the real application of ART is the
projection error U

130
. The two-hole jet reconstruction updates

the guessed field six times per iteration using its six projection
data sets, whereas the half-blocked jet reconstruction updates
only four times per iteration from its four projection data sets.
This 50% more number of updates for the two-hole jet results
in lower values of projection errors compared with the
half-blocked jet. On the other hand, the projection errors of the
half-blocked jet reach the minimum value more quickly than
the two-hole jet, which is attributed to the simpler nature of the
single-peaked, half-blocked jet.

Figures 7a and c show the ART reconstruction results of
normalized helium concentration, and Figs. 7b and d show the
FC reconstruction results under four projections for the
half-blocked nozzle and six projections for the two-hole orifice.
The reconstruction for all the present cases was carried out for
the cross-section located 9.0 mm above the orifice. The helium
jet was maintained laminar at Re\990 for the half-blocked
orifice, based on the tube inner diameter D\12.7 mm, and
Re\1270 for the two-hole orifice.

The ART reconstruction results in Fig. 7 show smoother
density fields and lower noise than the FC results. The ART
results contain virtually no directional dependence and no
ambiguities outside the jet regions. The use of cubic B-spline
basis functions helps to reconstruct smoother and more
comprehensive fields. The FC results, however, show noisy and
immature reconstruction compared with the ART results. The
square-pixel construction of the objective field in FC produces
the discretized results showing bumps in the field. The FC
results also show a strong directional dependence with
enlarged noise along the projection directions. Non-zero values
outside the jet are believed to be the mathematical artifacts due
to the only 4 (half-blocked jet) or 6 (two-hole jet) projections
that are insufficient for the one-time analytical inversion of FC
calculation.

Figure 8 shows the reconstructed results along the symmet-
ric lines, as oriented vertically in Fig. 5, in comparison with
the measured helium concentration using the oxygen sensor
probe. The solid circles represent the average oxygen sensor
readings and the fluctuating ranges are marked with the
uncertainty bars for the peak reading cases. The extended ART
results (solid curves) show more accurate identification of the
peaks and agree more quantitatively with the oxygen probe
results. The FC results (dashed curves) do not accurately
predict the peak locations and slopes. The deviations of the FC

results from the direct measured data, and the ART data, are
more pronounced for the twin peak distributions of the
two-hole jet.

8
Concluding remarks
The extended algebraic reconstruction technique (ART) is
developed for the purpose of using tomographic reconstruc-
tion of density-gradient optical projection method. The present
study focuses on speckle photography diagnostics, but the new
extended ART method can be applied to additional density-
gradient projection diagnostics, such as schlieren and shearing
interferometry. The extended ART converts nonalgebraic
speckle projection data into algebraic interferometric projec-
tions so that the conventional ART iteration process can
proceed. The accuracy and efficacy of the new ART scheme
were examined computationally by using computer syn-
thesized phantom fields and experimentally by the use of
asymmetric helium jets. In comparison with the Fourier
convolution (FC) reconstruction, ART shows significant
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improvement in reconstruction accuracy and smoothness.
Also, the ART results show good agreement with the direct
measurement of helium concentration distributions using an
oxygen analyzing sensor.
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