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Suggestive correctional methods for PIV image biasing caused by

a rotating mirror system

S.D. Lee, S. H. Chung, K. D. Kihm

Abstract A rotating mirror is widely used to generate the velocity
shift that can resolve the directional ambiguities of PIV (particle
image velocimetry) measurements. The rotating mirror system
inevitably creates the normal displacement of the resulting PIV
images and causes systematic image errors. Two corrective methods
are proposed to eliminate or reduce the image biasing in PIV
system. The use of two linearly traversing mirrors, instead of a
single rotating mirror, shows that image biasing can be eliminated
and the velocity shift well generated. As a second option, two
co-rotating mirrors, instead of one, can reduce the image biasing
with a maximum velocity shift available. Detailed imaging
kinematics of the two suggestive methods are presented to lead to
designing of practical devices that improve the PIV capabilities by
reducing the systematic image errors.

1

Introduction

The PIV data analysis needs to resolve the flow directional
ambiguities by determining the sign of the particle displacement
between the two superimposed recordings. One wellaccepted
method to resolve these ambiguities is a crosscorrelation between
recorded images (Keane and Adrian 1992). Merzkirch et al.
(1994) show a successful application of the cross-correlation
method to measure a natural convective flow. The
cross-correlation method works primarily for relatively low
velocity flows recorded with multiple video PIV systems since the
video framing rate limits the maximum velocity to be measured.
The most widely used method for discriminating the particle
displacement direction is to artificially generate
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a velocity shift of the second recorded image using a rotating mirror
(Adrian 1986). The shift velocity is added to the flow field so that
all the apparent particle displacements are consistent in their sign
and the directional ambiguities are resolved. Subtracting the shift
velocity from the measured particle image velocity determines the
real flow velocity.

The rotating mirror system generates an intrinsic problem of
aberrations in the imaging of the particles. When the mirror is
rotated, the reflected image, which also rotates, tilts and shifts
simultaneously between the two exposures in PIV. The image tilting
generates nonzero normal velocity component, or equivalently,
nonzero normal displacement with respect to the focal plane of the
recording system. This induced normal velocity component tilts the
perspective view of the particle images and the recorded particle
displacement is biased either shorter or longer than it should be.
Therefore, the velocity measurement from analyzing the particle
displacement recorded with a rotating mirror PIV system is
subjected to systematic errors (Oschwald et al. 1995). In addition,
the normal displacement of the reflected images from the mirror
rotation will make the recorded images blur and the blurred particle
images degrade the accuracy of the displacement measurement.

One can extend the PIV capability into three-dimensional
measurements by modifying the PIV system to identify and analyze
this normal velocity component. Prasad and Adrian (1993 /
developed a twin-camera stereoscopic system to detect the normal
velocity component and to extend the PIV to three-dimensional
vector detection.

For widely accepted two-dimensional PIV systems, however, the
systematic errors and image blurring problems remain to be
addressed. Raffel and Kompenhans (1995) suggested a
computational technique to correct the systematic errors as a
post-data correction of images already taken by a rotating mirror
PIV system. They demonstrated a successful application of the PIV
system with enhanced accuracy in detecting the particle image
displacement. Though the computational correction technique was
able to effectively eliminate the systematic image errors, the image
blur problem intrinsically occurring from the normal displacement
of the rotating mirror is yet to be resolved.

Two proposed correctional methods that eliminate or reduce the
systematic errors and image blurs will use two traversing mirrors or
two co-rotating mirrors instead of a single rotating mirror. The key
idea is to devise a velocity shifting configuration that does not
generate the normal velocity component with respect to the focal
plane of the recording system. First,
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the image biasing generated by a rotating mirror method is
identified both for a nonzero normal displacement and for a
nonzero normal velocity component. The generalized kinematics of
mirror imaging is briefly outlined and then the two suggested
methods are successively described using the image kinematics.

2

Systematic PIV image biasing generated by a rotating mirror
Generation of the systematic PIV image errors is briefly described
using two different approaches: (1) Sect. 2.1 uses a nonzero normal
displacement concept induced by the mirror rotation and
contributes to the image biasing, and (2) Sect. 2.2 uses a nonzero
normal velocity component that biases the PIV image. The former,
which Oschwald et al. (1995) also adopted for their description of
the image errors, requires a complicated geometrical analysis,
whereas the latter more comprehensively explains the image
biasing with a simple analysis.

2.1
Explanation by the normal displacement concept
Figure 1 illustrates the systematic errors on images generated by a
rotating mirror reflection. A plane mirror, rotating at an angular
speed of w, reflects the three stationary particles, A, B, and C on the
object plane. For simplicity, but without losing the general feature,
particle B is assumed to be on the optical axis of the system. The
image recording plane sees these three particles as if they exist at
the virtual locations of A’, B’, and C’ behind the mirror and
constructs images a', b', and ¢'. During the superimposed recording
interval At in PIV, the virtual objects, A', B', and C' rotate at an
angular speed of 2w with respect to the mirror axis P and move to
new virtual object locations A", B", and C". The relative
displacement of each pair of the two sets of virtual objects, one at t
and the other at t+ A t, always carries not only a tangential shift but
also a normal component about the image recording plane. The
arrows attached to A', B', and C' denote the relative displacements
and the expressions next to them represent the magnitudes of the
displacement.

This nonzero displacement in the normal direction alters the
relative distance between particles on the image recording plane.
The approaching normal displacement (A' to A") makes
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Fig: 1. Nlustration of systematic
PIY image hiasing by a normal
displacement comcept

the distance between images slightly larger than it should be
without any normal displacement, i.e., a"b" > a'b’ This is
because of the tilting of the perspective view of reflected images.
When the normal displacement is directed away from the image
plane (C' to C"), the distance is slightly reduced, i.e., C"'b" > c'b’.
Note that the amount of normal displacement,l 20xA t tan 8, or
20rA t tan 6; is radially increasing with increasing angle 0
measured from the optical axis, whereas the tangential
displacement, 2wrA t, is uniformly and uniquely determined by the
mirror rotation speed. The normal displacement component will
never disappear completely since neither 8, nor 6, can be exactly
zero when taking two PIV recordings with a rotating mirror
configuration. However, the particle located near the optical axis
can assume to have a negligibly small displacement in the normal
direction due to its extremely small Bu and 6 .

2.2

Explanation by the normal velocity component

Direct consideration of the normal velocity component of a
reflected image can better describe the PIV image biasing. Figure 2
schematically shows the reflected image plane of a stationary
object and the virtual object located at (x, z) on the reflected image
plane. The view point of the camera recording plane sees the
reflected image as a virtual object behind the mirror revolving at
around the rotation axis. L; is the object distance measured from
the view point of the recording plane and L, denotes the distance
between the rotating mirror and the object. At an arbitrary image
point (x, z), the rotating mirror motion in the counter clockwise
direction viewed from the top (Fig. 2) imposes a normal velocity
component, v, = -2wx, which is symmetrical with respect to the
z-axis, and a spatially uniform tangential velocity component, v,=
2wL,. The image biasing occurs from an enlarged or reduced

' The exact expression for the normal displacement is derived as
(r/cosBy)[cos(B,-2wAt)-cosB,]  from the geometrical consideration of the
rotating mirror reflection mechanism shown in Fig. 1. This expression can
be expanded by Taylor series expansion and the very first term in the series
approximates the normal displacement as 20rAt tanf, when wA/ is
sufficiently small.
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Fig. 2. Illustration of systematic PIV image biasing by a
normal velocity component

perspective view size when the normal velocity component is
non-zero.

Thus, the image biasing is dictated by the magnitude of a
tangential projection of the normal velocity component V,, , and for
the counter clock rotation as shown in Fig. 2, V,, is given from the
trigonometry:

V%, 2)=v, tan 2= —.Em.r! ———— :u:,,,‘h_-";n:a + 2 (1)
. 1

where a denotes the perspective viewing angle as illustrated in Fig.
2. The normal velocity directing away from the reflected image
in the positive + reduces the perspective view and the normal
velocity approaching the image plane in the negative + enlarges
the perspective view.

Figure 3 shows the spatially dependent image biasing per unit
time, Vy; ,(x, z), which is derived from Eq. (1) as

Viias (%, ¥) = (V,, cos @, ¥, sin @) = wal Xz
bias\X> V) =V, @5 Vp Q)= Ll L)L

=—(—x% —x2) (1a)

The arrow length represents the magnitude of image biasing. The
radially inward arrows denote a reduction in the recorded image
size, and the radially outward arrows represent an enlargement of
the recorded image size. The arrow direction is reversed
symmetrically with respect to the z-axis. The magnitudes of the
normal displacements are symmetrically distributed along the
x-axis. The amount of the actual image biasing in the PIV
recording is determined from Eq. (1 a) multiplied by the PIV
sample period required for the double recordings. The optimal PIV
recording period is determined from an combinatorial
consideration of the flow speed and the particle image sizes.

It is shown that a rotating mirror inevitably creates the normal
displacement because of nonzero normal velocity component.
This nonzero normal displacement or velocity component causes
the systematic errors of the recorded PIV images.
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Fig. 3. Spatial distribution of systematic PIV image biasing shown
in Eq. (la)

3
Kinematics of mirror images
A general expression for the reflected image velocity is derived
from considering and expanding the basic principle of mirror
image kinematics. The derived mathematical expression of the
reflected image velocity will describe the two new methods
presented in Sects. 4 and 5.

Geometrical considerations of mirror reflection of an arbitrary
vector I to a virtual object vector r ©  gives a simple
mathematical expression as (Fig. 4a):

F=r—20r min=4,

2mn; ) ry=Ryry=[R] -r (2]

where [R]= R;; = §;— njn; conforms to a reflection matrix and n
denotes a unit vector defined normally outward from the mirror
surface.

Using the same coordinate configuration shown in Fig. 1, the
general expression for the three-dimensional reflection matrix
has been derived. When a mirror is rotating around the z-axis
(plane rotation with a single degree of freedom) or linearly
traversing in the x - y plane, the unit normal vector is given as
n=(sin 6, -cos 6, 0) where the mirror angle 6 is measured
from the x-axis. From Eq. (2), the reflection matrix is expressed
as

1 0
[R]=5 2n,-nj= 01
0 0

-0 O

sin® 0 sinfcosf 0
—2| —sin 6 cos § cos® 0 0
0 0 0
cos20 —sin20 0 -0 0
={sin20 cos20 0 0 —1 0 (3a)
0 0 1 0 01
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and its time derivative is

—sin20 cos20 0

%: % cos20 sin26 0
0 0 0
[cos(2i+a0 aln{zi+920°] 0
=k | sin{2+90 —cos{+9F 0 [3h)
1k ia o

Equation (3a) interprets the reflection matrix to form two
elementary movements represented by the two matrices: a mirror

imaging with respect to the x-z plane and a rotation by an angle 26.

The above basic image kinematics is extended to derive a
general expression for the reflected image velocity. When an
arbitrarily specified position vector I, specifies the mirror location
(Fig. 4b), an expression for the reflection of an arbitrary position
vector p to a virtual object vector p ” is derived from an extension
of Eq. (2):

P=[R]-(p—r)+rn “

The virtual object or vector is called a reflected image or a
reflected vector, respectively,  without being confusing with the
true image or vector that is ultimately recorded in PIV. A time

derivative of the reflected vector p * determines the velocity of the

reflected image, i.c.,

©d ]
vimage::%=a{[R] '(P“"m)+"m} (5)

Expanding the derivative, applying vector identities, and using
useful vector relationships of dn/dt = w x n and w=n x dn/dt
(arithmetic details are presented in Appendix A), Eq. (5) derives a
general three-dimensional expression for the reflected image
velocity as

vimage=2wx{[R] (p_rm)}+2(vmn)"+[R] v 7(6)

where w is the angular velocity of a rotating mirror, v,,, denotes
the traversing velocity of the mirror defined as v, = dr, / dt, and
v represents the object velocity defined as v = dp / dt. Note that
the mirror rotation vector W has only the z-directional component
for the plain mirror rotation and the first term on the RHS, due to
the vector product by w, will not carry any z-directional component.
This first term on the RHS of Eq. (6) represents the portion of the
image velocity created by the plain mirror rotation and this portion
of the image velocity exists only in the x -y plane. The second term
is a contribution from the mirror traverse perpendicular to the
mirror surface. When the mirror traverse takes place in the plane
perpendicular to the mirror surface, this term also retains its
component within the x - y plane. The third term reflects the mirror
imaging of the real velocity of a moving object, v. The object
velocity can be arbitrarily three-dimensional and so be the
third term. In fact, the general expression for the image velocity
Vimage iN Eq. (6) can be three-dimensional only if the third term, the
object velocity, is three-dimensional.

The first term in Eq. (6) can be subjected to be time
dependent as the particle position vector p changes with the
particle movement and/or the reflection matrix [R] alters in time for
the special case of 8 = 0 (t). The second and third terms remain
time invariant as long as the mirror traverses at a constant velocity
v, and the particle velocity remains steady at v during the PIV
sample period. However, as will be shown in Sects. 4 and 5, the
recorded PIV image velocity Vip,g. is invariant with respect to time
when the mirrors are under plain motion on the x -y plane or the
mirrors are rotating with a single degree of freedom, i.e., around
one rotating axis.

4

Double reflection by two traversing mirrors

As discussed in Sect. 2, the image biasing comes from a nonzero
normal displacement which is created by the image tilting due to
the rotating mirror. The idea is that the proper usage of two
traversing but nonrotating mirrors can zero the normal velocity
component of the recorded image. The proposed system can
eliminate the image biasing and effectively provide the velocity
shifting required to resolve the directional ambiguities in PIV
measurements.

Figure 5 illustrates a double reflection of a stationary object by
two plane mirrors traversing normally at speeds of v, and vZ. For
simplicity, the object is assumed to orient vertically with the two
mirrors inclined at 6,,and 8, respectively. Since the reflected
image rotates from the object by twice the mirror inclination angle
(Eq. (3a)), the inclination angle of the first reflected image with
respect to the + -axis in Fig. 5is 20, - 90°.  The second reflected
image sees the first reflected image as a virtual object and the
inclination angle of the second reflected image is expressed as

20, — (26, -90°=2(8, -6,)+90°.
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Fig. 5. Schematic of double reflection of an object via two
traversing mirrors

The mirror traversing velocities are expressed in terms of x and
y components as

v,=v,(—sin 8,, cos 6;, 0) (7a)

v,=V,(—sin 8,, cos 0,, 0) (7b)

where v; and v, represent the magnitudes of normally traversing
velocities of the two mirrors, respectively. For the first reflected
image of the stationary object through a nonrotating, linearly
traversing mirror, the first and third terms of Eq. (6) are zero and
the resulting image velocity from the second term is given as Vipage,
=2 v;. For the second reflected image, however, the third
contribution is no longer zero since the second reflected image sees
the first reflected image as a virtual object moving at yimage-
Therefore, the second reflected image velocity is determined from
the second and third contributions of Eq. (6):

Vimage2 = [RZ] IjVimagel +2 V2 = 2 ([Rz]wl""Vz) (8)

Vimage, =2 {¥1 sin(20,—0,) —v, sin 6,

" —v; c0s (20, —6,) + v, cos 6,, 0} 9)

in which the image velocity for a stationary object retains
two-dimensional motion since the pseudo-object velocity / jmager
has only two-dimensional components. The absence of mirror
rotation eliminates the first term in Eq. (6) and the image velocity
V image2 OF Eq. (9) is time invariant when »  and / , are constants.
The condition that eliminates the normal velocity component
(with respect to the camera image plane) of the second reflected
image is determined from that the inner product of the image
velocity, Eq. (9), and the unit normal vector perpendicular to the
inclination angle of the second reflected image must vanish, i.e.,

0= Vimage,  Mo=2{v, sin(26,—6,) — v, sin 6,} cos(26,—26,)
+2{—v, cos(20,—6,) +v, cos 8,} sin{26,—260))  (10)

where the unit normal vector is 7 , = [cos (26, 20,, /,
sin/28, - 26,/, 0].Equation (10) is satisfied when the
mirror traversing velocity ratio is given as

Va_ . sin 6, (1
v, sin(20,—6,)

Under the specified condition that vanishes the normal velocity
component of the second reflected image and eliminates the image
biasing, an expression for the shifting velocity in the tangential
direction is derived from substituting Eq. (11) into Eq. (9):

Vo[ in 0, sin 0, |
Tt _ zl {sin(Z()z gy Sin 0 sin O, } (—sin(20,~20,))

vy

sin 0, cos 0,
1= c0s (20, —0) 4o T2 o520, — 20
cos 2= 0) sm(Z()lw-UZ)}COQ( : ‘)]

sin 6,

=2[m—cos 91] (12)

Figure 6 shows the mirror traversing velocity ratio v,/v; zeroing
the normal image velocity and the velocity shift normalized by the
first mirror traversing velocity vg,;a/v, as functions of 8,, for a
commonly selected 6, = 45°, i.e., from Egs, (11) and (12) with 6, -
45°;

VVZ 1 '(11 )
2 - a
2 \/icos 0,

Yhiti _ /3 (tan 6,—1) (12a)

For 6,=45°, where the two mirrors are aligned parallel and
traversing at the same speed, the normal velocity component of the
image is eliminated but the velocity shift is zero so that the
directional ambiguity in PIV cannot be resolved. As 8, deviates
further from 8, =45°, the magnitude of velocity shift increases
and the system can apply for flows containing larger negative
velocity components in magnitude. Simultaneously, the field--
of-view of the second reflected image is quickly reduced
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Fig. 6. The mirror traversing velocity ratio v,/v; zeroing the
normal image velocity and the dimensionless velocity shift

Venie/ V1, as functions of 6, for 8; =45° for double reflection by two
traversing mirrors



because of the image skewing with increasing deviation of the
second mirror orientation 6, from the first mirror orientation 6, .

ab Vs Vo, and v shifts
though these five parameters are not totally independent, must be

Therefore, an optimal combination of 6;,

appropriately determined from the measurement requirements of a
specific flow to be tested.

5

Double reflection by two rotating mirrors

Instead of one, a use of two parallel aligned, co-rotating mirrors at
the same angular speed can reduce the image biasing when the two
PIV images are recorded nearly at the mirror slope angle of 45°.
The first reflected image of a stationary object in Fig. 7 rotates
counter-clockwise at an angular speed of 2w around the first
mirror axis. Since the first mirror and the image of the first mirror
with respect to the second mirror counter-rotate, the rotational
motion of the image by the first mirror cancels each other and the
second reflected image has only revolutionary displacement with no
image tilting. In addition, for the second reflected image recorded at
a mirror configuration of a 45° mirror slope angle, the tangential
velocity shift is twice the mirror rotational angular speed multiplied
by the distance between the first and second mirror axes.

A mathematical description of the co-rotating two-mirror system
follows. The general expression for the reflected image velocity,
Eq. (6) reduces to a simpler form for a rotating but non-traversing
first mirror ( v ,, , = 0) with a stationary object ( # =0):

Vimage, =20 X {[R] - (p—1,,) } (13)

where / , , denotes the position vector of the rotational axis of
mirror (Fig. 4b) and the subscript ‘1’ denotes the mirror-1 in Fig. 7.
When the z axis is set to coincide with the first mirror axis, the
mirror position vector / ,, , is zero, the mirror rotation vector w
= (0, 0, w), and the arbitrary position vector p in

First irmnage
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Fig. 7. Schematic of double reflection of an object via two
co-rotating mirrors

Fig. 4bcantake (+, y, 7). Then, the position and velocity
of the first reflected image are given respectively as

“cos20 sin20 0~ /x
VPimagel:[R] -p= sin20 —cos20 0 y

0 0 1 z
0 -1
Vimage, =20 | 1 0
0 0
cos20 sin20 0 /x\\
x||sin20 —cos26 0 |y
0 0 1 z
[0 —1 07 /xcos26+ysin20
=20 0 0| | xsin20—ycos20
0 00 z

—x sin 20 +y cos 26
=2w| xcos20+ysin 20

0

where 0 denotes the mirror slope angle measured with respect to
the x-axis as given in Fig. 1 or Fig. 7.

The second mirror position vector can take r,,, = (0, -d, 0) where
d is the distance between the first and second mirror axes. The
second image sees the first image as a virtual object, which
traverses at Vimage, and Eq. (6) for the second reflected image is
expressed as

) Vimage; = X {[R ] : (pimage‘ - rmz) } + [R ] ) vimagel

=20 x([R] :[R]p) =20 X ([R] - 1,p.) + [R] - Vimage,
(15)

Substituting Eqs. (14a) and (14b) into Eq. (15) gives a strikingly
simple expression for the second reflected image velocity (the
detailed derivation is presented in Appendix B):

Vimage, = 20d(cos 26, sin 26, 0) (16)

The non-zero x-component of Vi, creates the normal velocity of
the second reflected image and the y-component provides a
velocity shift for PIV. To note is that the ultimate recorded image
of Eq. (16) is time-independent even in the presence of the mirror
rotations. The time dependence, or equivalently, the position vector
variation of the recorded object, (X, y, z) appearing in the first term
disappears as a result of the compensation from the third term
(Appendix B).

Figure 8 shows the normal velocity component and the velocity
shift normalized by 2wd as functions of 6. It is emphasized that the
two co-rotating mirror system generates a spatially uniform
distribution of the normal velocity component throughout the
image field for a specified mirror slope of 8, while the single
rotating mirror generates a spatially dependent normal velocity
distribution (Eq. (1) ). Furthermore, the normal component
disappears at 8 = 45°, and the velocity shift maximizes to a value of
2wd (Fig. 8). If the two PIV images
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Fig. 8. Dimensionless normal velocity component and the velocity
shift as functions of the mirror slope angle of 0 for double
reflection by two co-rotating mirrors

are taken at the mirror angles of 45° + & with &= 0, the corotating
two-mirror system will effectively minimize the image biasing and
maximize the velocity shift.

6

Concluding remarks

The systematic image errors have been identified from the normal
displacement or the normal velocity component of PIV images
occurring from a rotating mirror component. Detailed image
kinematics have comprehensively described the two new ideas that
are proposed to minimize the PIV systematic errors. Two linearly
traversing mirrors, which substitute a single rotating mirror, can
eliminate the systematic image errors and effectively generate the
velocity shift. On the other hand, two co-rotating mirrors, instead
of one, can reduce the systematic errors and maximize the velocity
shift when the PIV images are taken at mirror slope angles close to
45°.

Appendix A: Derivation of the general expression for the
reflected image velocity vector viy,,.

From substitution of Eq. (4) into Eq. (5), the general expression
for the image velocity vector is derived as

af d
vimagezl'qd’%=d_t{[R]'(p_rm)+rm}
“d[R] d dr,
g @ A RI G 0+
"d[R]
T' _rm)+[R]v+(vm_[R]vm)
“d[R]

—— (p—rn)+[R]-Vv+2(v,-n)n (A1)

dt

where

dlR} d d
i T e 2= (= 2 ) R R,

dry,
— 2w+ L R, with 12, - [AZ)

When the angular velocity of the rotating mirror is defined as ,
the amount of the mirror orientation change is given by Q = w x n.
It is noted here that the component parallel to the normal vector
does not contribute to the change of orientation. For Q, wand n is
mutually perpendicular and n is a unit vector, W=n X Q, or
equivalently, (W= & nj Q is satisfied. Thus,

Eilm Wi = Eipm&ijk ank = (61']‘6mk —0i 5mj) ank =mQ,—Qn,

(A3)
(2 my 4+ ) Rg = (0 m,+ m ) (g — iy )
= 03 my 2y~ 26k A= il — G,
S = = Ll
(A4)
d
L&] =20y i = ey X F
dr (AS)
where ' is identical to [R] [t as shown in Eq. (A2).
Substituting Eq. (A5) into Eq. (A1) gives the general
expression for the image velocity vector of Eq. (6)
Vomage = 2o 0 ([R] clp=r )} b2V m]me[R] ¥ (6)

Appendix B: Derivation of V;magez for the two co-rotating
mirror system
The vector operator co x is expressed as

0 —e 0 0 -1 a0
R 0 0|=qo1 o
(i a o o0 a0 B

Then the first term of the final form of.Eq. (15) gives

0 1 0 cos 20 simif 0]
wx ([R] :[R] pl=u 00 fn2® —cos2f 0
L o0 0 ] 1
cos20 sin20 0
sin260 —cos26 0
0 0 1 z/)
[0 -1 0 I-' 1 0 a0 In':',"|
=awll 0 |I o1 0| |y

[0 o of {|lo o 1] te/)

0 —1 0] /x
=w|1 |y |=0(—y,x,0) (B2)
0 00 z
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The second term yields to

0 10
—oX([R]-r,)=—w|1 0 0
0 00
“cos20 sin20 0 0
sin20 —cos20 0 |-|—d
0 0 1 0
0 -1 0 —d sin 26
=—ow|l 0 O0f-| dcos26
0 00 0
=wd(cos 26, sin 20, 0) (B3)

Substituting Eq. (14b) into the third term of Eq. (15) gives

cos2F sin2@ 6
[B]-¥ippge, =| 8in 280 —cos2d 0
1 il 1
{ — x 5in 204 y.cos 20
.El.u'.l % ens 2 +pein 2l |=Xwly —x0)
i i} |

Substituting (B2), (B3), and (B4) into Eq. (15) gives

vimage2=20) X ([R] : [R] P)_Zm X ([R] : rm;) + [R] * Vimage,
=2wd(cos 20, sin 26, 0) (16)

References

Adrian RJ (1986) Image shifting technique to resolve directional
ambiguity in double-pulsed velocimetry. Appl Opt 25:
3855-3858

Keane RD; Adrian RJ (1992) Theory of cross-correlation
analysis of PIV images. Appl Sci Res 49: 191-215

Merzkirch M; Mrosewski T; Wintrich H (1994) Digital particle
image velocimetry applied to a natural convective flow. Acta
Mechanica 4: 19-26

Oschwald M; Bechle S; Welke S (1995) Systematic errors in
PIV by realizing velocity offsets with the rotating mirror
method. Exp Fluids 18: 329-334

Prasad AK; Adrian RJ (1993) Stereoscopic particle image
velocity applied to liquid flow. Exp Fluids 15: 49-60

Raffel M; Kompenhans J (1995) Theoretical and experimental
aspects of image-shifting by means of a rotating mirror system
for particle image velocimetry. Meas Sci Technol 6: 795-808



