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Tomographic identification of gas bubbles in two-phase flows
with the combined use of the algebraic
reconstruction technique and the genetic algorithm
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Combined use of the algebraic reconstruction technique (ART) and the genetic algorithm (GA) shows highly accurate
and efficient tomographic reconstruction of line-of-sight projection images of two-phase flows compared with
reconstructions obtained by separate use of these methods. A modified GA-based tomography uses the ART
reconstruction result as preliminary information on the number, shapes, and sizes of bubbles to be reconstructed. This
combined use of the two methods exploits faster convergence of the ART to the approximate solution space and more
robust and accurate optimization of the GA to the ultimate solution space. In the investigation a computer-synthesized
phantom field that consisted of five elliptical gas bubbles in liquid or solid sutroundings was used. © 1998 Optical

Society of America
OCIS codes: 110.6960, 200.1130, 280.2490, 100.0100.

Two-phase flows, such as bubbly liquid flows or solidladen
liquid flows, are popular in many industrial processes, and
the nonintrusive determination of the number, locations, and
sizes of the bubbles (or solid particles) is increasingly in
demand to monitor the component fractions and their
distributions. The lineof-sight optical projection of two-phase
flows is expressed as a line integral of the wave impedance 1
(x, y) along the ray occupied by the test field (Fig. 1), i.e.,

Lp(r,(p)=J‘J‘[(x,y)5(r—xcos(p—ysin(p)dxdy (1

where J(..) denotes the Dirac delta function. The projection
Wand the impedance [ are specified for an optical technique
to be considered (Table 1).

For simplicity, here the projection is an algebraic integral
of the medium (gas, liquid, or solid) density along the ray,
and the impedance is identical to the density field, i.e., /(x, y)
= p(x, y). One must reconstruct the impedance or density
field from the measured projection data ¥ by inverting the
integral of Eq. (1). This numerical data processing is called
tomography.

For illustrative purposes, a phantom density field is chosen
as a summation of five elliptical bubbles [Fig. 2(a)]. Thus the
Jjth bubble is described as an elliptical function g; :
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g;(x.y:d;)= 5 j
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where 4J = (x;, y;, a; b;), whose components correspond to
the location coordinates of the center and the major and
minor axes of the ellipse. Binary basis function values are
given to represent a normalized field impedance (density) of
1 for the region inside the bubble and of 0 for liquid or solid
outside the bubble.
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The line-of-sight projection, Eq. (1), is known
mathematically as the Radon transform' of function I(x, y),
and the Radon transform is a function of the projection plane
coordinate 7 and the projection angle @in Fig. 2(b), as shown
for the Radon transform of the phantom field [Fig. 2(a)]. An
accurate mathematical inversion of Eq. (1) can be obtained
only if the inverse Radon transform is known for all ¥, @
and infinitely many projections are available for infinitely
many projection angles @ Since the inverse Radon
transformations of most asymmetric impedance functions are
not available and only a finite number of projections are
allowed in practice, a two-dimensional Fourier inversion,'
instead of the direct inversion by Radon transformation, is
used to achieve an approximate inversion of Eq. (1).
Nevertheless, the Fourier inversion requires a significant
number of equally angled projections for acceptable accuracy
and mathematical stability.
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Fig. 1. Line-of-sight optical projection of two-phase
impedance field.
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Table 1. Examples of Line-of-Sight Projection W and
Impedance 1 for Different Optical Techniques

Technique Y 1
Interferometry Fringe pattern Density field
Speckle Beam deflection  Lateral gradient

photography angle of density field
X-ray Light attenuation  Desity field
computerized
tomography
or y-ray
Ultrasonic Pressure-wave Density function
(nonoptical) travel time (speed of sound)
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Fig. 2. (a) Computer-synthesized two-phase field, (b) its
line-of-sight (Radon transform) projection, (c) image
reconstructed with ART, and (d) image reconstructed by the
combined use of the ART and the GA.

The alternative reconstruction algorithm to the Fourier
inversion, particularly for a limited number of projections, is
known as the algebraic reconstruction technique* (ART). The
ART constructs the field with a finite number of square
pixels, and each pixel carries a randomly assigned initial
pixel value 4; of either 1 (gas) or 0 (liquid or solid). The
optical projection Eq. (1) of this initial estimated field
generates a virtual projection (. Then, by use of feedback
information on the deviation of the virtual projection (’(from
the measured projection (¢ (from the true field), iterative
updating of each 4; is carried out.

Successive iterations are carried on until the feedback
deviation falls within a specified convergence or meets a
specified number of iterations. The algebraic update is
described by

Al_qﬂ :Al_q +VVl.q E p(wp _Lﬁp)

NP , 3
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where Wi is the weighting factor, ¢ denotes the gth iteration,
P represents the number of projection angles, and N is the
number of data realizations on each projection plane. Note
that the ART update is possible for only a single set of
unknowns (4;) and for a linear projection that allows the
algebraic updating of Eq. (3). This simplicity and linearity
make the ART iteration extremely fast.

Figure 2(c) shows the field reconstructed by use of the
ART, where the field is described by 15 x 15 square pixels
with 225 unknown 4; (i = 1, 2, 3 . . . 225). In the calculation
15 equally angled projections (P = 15) and 15 rays (N = 15)
per projection were used. The calculation was stopped at
approximately 650 iterations, beyond which the convergence
was nearly saturated. Although the calculation converges
fast, the reconstruction deficiency is apparent from the use of
finite square pixel representation of the field. The
reconstructed bubble images roughly identify -elliptical
shapes. On the other hand, the ART provides the precise
number of bubbles and their approximate sizes and locations.
This suggests that the ART reconstruction result can be used
as intelligent initial information for more sophisticated and
time-consuming reconstruction algorithms, such as the
genetic algorithm- (GA-) based reconstruction.’

The adoption of GA optimization for image reconstruction
showed fairly good potential for improvement, particularly
when multiple sets of unknowns had to be simultaneously
optimized." One distinct advantage of GA-based
reconstruction over the ART is that the former permits the
use of any arbitrary type of basis function whose summation
conforms to the density field to be reconstructed. In addition,
the basis function can have as many parameters as necessary,
since the GA-based tomography can simultaneously handle
multiple sets of unknowns. The most obvious choice of the
present example, reflected from the preliminary ART
solution, will be five elliptical-type basis functions.

The GA-based algorithm (Fig. 3) starts with a number of
solution candidates (individuals, 7;), and each individual
carries four different kinds (corresponding to the x-y
coordinates and the major and minor axes of the ellipse) of
the total of 20 randomly assigned numbers (genes) for five
bubbles. The idea of multiple solution candidates is called an
implicit parallelism, and the group of individuals is called the
population. The individuals and their genes evolve under the
principle of guided random selection based on the survival of
the fittest. The individual's fitness level enforces the survival
of the fittest feature. Thus fitness (F;) for the present example
is defined as the degree of deviation of the virtual projection
of an individual solution candidate and the measured
projection from the true field, where the smallest fitness
value is the best.

The heart of the routine is the selection of the fittest from
a pool (population) of solution candidates (individuals). The
selection routine picks individuals from the population, and a
higher probability of selection is given to individuals with
smaller fitness values. When a pair of individuals has been
selected as parents 1 and 2, they are given a prespecified
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Tahle 2. Comparison of Features of the ART and
(iA-Based Reconstruction

ART
Number of bubbles and
approximate bubble
shapes and locations are
quickly available.

GA-Based Tomography
Accurate reconstruction of
bubble shapes and sizes

possible by use of an
appropriate type of basis
function.

Nonlinear optimization
allows multiple sets of
parameters: the method is
robust but requires
lengthy computation.

Fewer total unknowns :

5 (bubbles) x 4 (x, y
locations and majorminor
axes) = 20.

Linear optimization
restricted to a single
set of parameters: the
algorithm is simple and
fast.

Large number of total

unknowns identical to the
total number of pixels:

15 x 15 =225.

chance of creating offspring. If offspring are created, each
transfer of genetic material carries a prespecified chance of a
mutation of itself. It is this mutation operation that is the
primary source of robustness in the algorithm. By including
new genetic material in the population, the algorithm
continually searches new areas of the search space for the
ultimate optima in a multipeaked problem.

One additional source of robustness is called elitism, in
which any offspring and mutants do not survive unless they
are better than their parents. This mechanism ensures that the
best individual holds its title until a better individual evolves,
so the present solution quality can be maintained for at least
the next generation.

The GA-based reconstruction result of Fig. 2(d) was
obtained by use of a population of 100 individuals evolving
to 1000 generations with 50% crossover prob

ability and 10% mutation probability. The number of
projections and the number of rays per projection as
considered for the ART calculation are both 15. This GA
result shows much more accuracy than the ART result.

As expected, the GA's simultaneous handling of multiple
sets of parameters requires a massive amount of computation
and demands 2-3 orders of magnitude more CPU time than
the ART. At the cost of increased computation effort, the
GA-based tomography reconstructs far more accurate shapes
and locations of the bubbles. The preliminary ART
calculation plays an important role in determining the number
of bubbles, the rough bubble shapes, and the. ballpark bubble
locations in the GA. The approximate bubble shapes provide a
valuable clue to the type of basis function to be selected, and
at least one individual of the initial population carries genes
containing the information on the ART-determined bubble
locations (x, y) and sizes (a, b), so this prestigious individual
can lead the evolution and significantly expedite the
convergence. If the GA were used without the preliminary
bubble information, its CPU time could be several times
longer. The CPU time taken by the GA increases
geometrically with the number of unknown parameter sets.

The ART method converges to a nearly unique solution,
regardless of its initial guess as to solution field. The
GA-based method, however, is a statistical method that can
result in different solutions, depending on the calculation
procedures. After several trials, the best solution (individual)
must be selected to give the highest fitness (the lowest
fitness value) or the most accurate reconstruction. The way
to ensure the repeatability of the GA method is to specify a
fixed random number seeder, that is, a lengthy series of
random numbers, that controls each manipulation step. One
must examine several different random number seeders to
select the best seeder, which gives the highest reconstruction
accuracy. Although this additional effort of the GA in
determining the best available solution seems cumbersome
and detrimental, it is commonly required in most statistical
iterative methods. Table 2 summarizes a comparison of the
individual ART and GA techniques, emphasizing the
potential merit of their combined use.
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